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Getting close to black holes:
the innermost 100 R

<> Responsible for up to ~98% of accretion power
output.

<> Launch-site of the most powerful outflows
and jets.

<» Strongest gravitational potential in the
universe.

< In stellar mass BH, the greatest spacetime
curvatures that we know to exist.




The strong gravity regime

The most extreme
space-time is found
around stellar-mass
BH & NS, and
corresponds to
smallest light-
crossing time-
scales, and the
fastest variability
e signals.
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Mapping the inner accretion flow

Lag of hard . } .
Vs soft 8 <> Time delays are observed

photons ' | between variations at
' different energies.

<> For the first time, the

| fastest of these can be
timescale | identified with
reverberation of the
continuum off the disc
(e.g. in AGN 1H0707-495,
Fabian et al. 2009, Zoghbi
et al. 2010




Why IXO?
<» Fastest variations probe smallest regions (simple
light-travel/causality arguments)

<> Need high S/N to probe fastest variations
<> Two S/N regimes:

<> many photons/variability-cycle: S/N scales as
sqrt(rate)

<> few photons/variability-cycle: S/N scales linearly
with rate

<> AGN are in former regime, XRBs in latter, hence we
see biggest improvements for XRBs at the highest
count rates: optimal for HTRS observations of XRBs




Probing the fastest signals

around black holes




count rate (count s

Basic X-ray timing

Light curves show variations on a broad range of time-
scales. The Power Spectral Density shows the rms-

squared amplitude of variation as a function of Fourier
frequency (1/timescale)

GX 339-4 2009 hard state 0.5-10 keV (XMM-Newton EPIC-pn)

Ligsht curve

Power x Frequency

0.1 1
time (s) Frequency (Hz)



High-frequencies: what do we see now?

< Detection of high-
frequency QPOs is a
major legacy of RXTE

< Interpretations
centre around one or
more General
relativistic epicyclic
resonant frequencies at
inner disc edge

< But too few
examples to pin down
models
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What could IXO-HTRS see?

T RXTE-PCA s [XO-HT

<» Even allowing for hard spectral shape of QPOs,
IXO-HTRS combination allows detection of signals
down to <0.25% rms

<> Soft X-ray response also opens up new discovery
space of QPOs associated with the accretion disc




Tracking the QPO on 1s time-scales

Frequency (Hz)
Frequency (Hz)

1000 2000 3000 4000 0 1000 2000 3000 4000
Time after TO (seconds) Time after TO (seconds)

Stability of frequency would prove epicyclic GR
interpretation: opens door to use of QPO to
measure spin for BH with known mass




QPO+simultaneous spectral modelling
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BHXRBs will allow simultaneous comparison of
several independent techniques to estimate spin




ou AGN?

segmen

Time (ks)

<> To date, only one statistically strong example
(RE J1034+396, Gierlinski et al. 2008)

<> However, IXO only modestly improves chances of
detection, because in AGN, noise is dominated by
the intrinsic variability, not Poisson effects




X-ray reverberation
mapping of accreting

black holes
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<> Power-law continuum varies first, followed by
reflection thermally-reprocessed emission

< Path-length difference defines intrinsic lag. Observed
lag is the intrinsic lag diluted by the ratio of continuum

to reverberating emission




Spectral-timing methods

Use the ‘cross-power-spectrum’ (or ‘cross-
spectrum’) to combine spectral and timing
information and measure

lags vs energy (lag-energy): plot the lag
of variations in each energy bin relative to
some broad ‘reference’ energy band.
Should roughly follow shape of
reverberation-spectrum/continuum

We can also define specific frequency/time-
scale ranges to measure the lags over




First evidence of disk
reverberation in a BHXRB
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The lag behaviour is also strongly frequency-dependent,
with a sign-reversal corresponding to drop in variable disc
emission




Interpretation

A

—> [

At low frequencies, variations in mdot are produced at larger radius in
disc, modulating disc emission before propagating in to the corona on

the disc viscous time-scale

At high frequencies, variations in mdot are produced at small radius in
disc or in corona itself. Only a fraction of disc emission can respond,
but all of corona does, and coronal heating dominates variability =
disc reverberation




Importance of soft response

Note that the disc signature in the lags
appears below 2 keV.in the hard state:
underlines need for. a soft response to
probe disk variability and thermal
component of reverberation. This
could never be seen with RXTE and had
to wait for XMM-Newton!




The future with IXO

Lag vs energy for
100 ksec
observation of
BHXRB hard state
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Huge improvement since S/N scales
linearly with count rate




How lag-vs-energy spectra map the disk

Iron line+reflection _ Reprocessed disk thermal emission
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<» Lag depends on emissivity vs light-travel delay (size-
scale). Selecting on Fourier-frequency can pick out
different parts of the emissivity profile at that energy.

<> We can map the reflection and disc thermal emission




Key point: the power of measuring
reverberation lags is that they give you
measurements in km, not R/M (given
by spectral fits).

Can use in combination with R/M
NEEN S ok

<> estimate BH mass

<> or with an independent estimate of
mass, carry out direct test of GR in
strong-field regime




Using IXO-HTRS to measure the disk
inner radius of Cyg X-1 in the hard state

(100 ksec
exposure,
select
variations
from 50-100
Hz)

i
[
i
X
a0]

T
a
~i
X

“n O
N
=N
d o
EI
° 3
o X
Eﬂi‘
< )
=l
i

Q

—

X

o2

0

Energy (keV)




Using IXO-HTRS to map reflection from
HF QPOs

(100 ksec
exposure,
select
variations at
QPO
frequency)
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Mapping AGN: best case NLS1s

R~ emissivity

XMS 100
ksec, bright
NLS1

500

time delay (s)

R~* emissivity
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Fe line is not accessible, but soft disklines
clearly visible (note line cores with large lags)




Summary

<> Timing measurements are a powerful probe
of strong gravity which is independent of and
complementary to spectral approaches

<> For fast timing and lags, we find highest S/N
in BHXRBs with high count rates

<> Good measurements can also be obtained at
soft energies for the brightest and most
variable AGN




Fourier-resolved spectra

Ratio to [=1.65
absorbed power-law
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Fourier-resolved lag-energy
spectra
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